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This exam starts at 13:00 and you have three hours to complete the most you can. This exam contains
7 questions, each of which is worth ten points. You can work together with your group on all questions.
Please hand in each question once, on a separate sheet, numbered with the corresponding exercise. We
wish you the best of luck!
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Question 1:

Simple Model System for Rod-Like Particles
J. de Graaf

October 5, 2023

We consider a system of long colloidal rods suspended in a molecular fluid. A simple model of of this
system views the rods as rectangular blocks of length L and thickness D, i.e., of the form L×D×D.
A further simplification is to restrict the number of possible orientations of each rod to three, such
that the main axes of the rods can only point in the direction of a laboratory frame x̂α, α = 1, 2, 3. A
particle with orientation α has its long axis along x̂α and its minor axes aligned with the remaining
axes. The rods are not confined to a lattice, so that their centers of mass can move throughout the
volume V . to which they are contained. The interaction between the particles is hard, i.e., overlap
is not allowed. We write ρ for the total number density, so that the total number of rod particles is
given by N = ρV . The Helmholtz free energy F of such rods at temperature T is given, within the
second virial approximation, by

F

V kBT
=

3∑
α=1

ρα (log ραV − 1) +

3∑
α=1

3∑
α′=1

Bαα′ραρα′ , (1.1)

with ρα the density of particles with orientation α, and V the (irrelevant) thermal volume. The
definition of the virial coefficient is given by

Bαα′(T ) = −1

2

∫
V
(exp [−βϕαα′(r)]− 1) dr ,

where the integrand is often referred to as the Mayer function. The pairwise interaction between
rods of orientation α and α′ is given by ϕαα′(r), where r is their center-to-center distance vector.

(a) (0.5 points) Argue that Bαα′ is a symmetric 3× 3 matrix.

Define the excluded volume to be that region round the center of the particle with orientation α,
where the center of the particle with orientation α′ is not allowed to be, due to the hard-particle
interaction.

(b) (0.5 points) Sketch the two possible configurations that can occur in our simple model. Next
use your sketch to indicate the excluded volume.

(c) (0.5 points) Use the intuition that you developed in (b) to calculate the second virial coefficients
B11 = B22 = B33 ≡ B∥ and B12 = B13 = B23 ≡ B⊥ for pairs of parallel and perpendicular
rods, respectively.

From here on out, we will consider the “needle” limit L/D → ∞, where we will take the leading
order scaling to determine the behavior of the system.

(d) (1 point) First calculate B∥/L
2D and B⊥/L

2D in this limit, and then show that the dimen-
sionless free energy ψ = FL2D/V kBT takes the form

ψ =
∑
α

cα(log cα − 1 + log
V
L2D

) + 2(c1c2 + c1c3 + c2c3), (1.2)

with dimensionless densities cα = L2Dρα.

The constant term logV/L2D can be ignored; it is an irrelevant offset of the free energy of chemical
potential. Define the nematic order parameter S by c3 = 1+2S

3 c and c1 = c2 = 1−S
3 c, with c =

c1 + c2 + c3 = ρL2D the total dimensionless density. This definition of S selects the x̂3 axis as
special, which is simply a labeling convention.
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(e) (0.5 points) Sketch the behavior the this system at very low (ideal-gas-like) dilution.

(f) (0.5 points) Increasing the dilution slightly, we anticipate a phase transition. Argue which
degree of continuous freedom will become discrete first. Illustrate your answer by a sketch.

(g) (0.5 points) Use your result from (e) to explain the nomenclature of “nematic order parameter”.

(h) (1 point) Give the range of the parameter S, keeping in mind that densities are non-negative.

(i) (0.5 points) Show that

ψ(c, S) = c

(
2

3
c(1− S2)− 1

)
+

1

3
c log

[
c3

27
(1− S)2(1 + 2S)

]
− 2

3
cS log

[
1− S

1 + 2S

]
.

For a given c one needs to determine S such that it minimizes ψ (at the fixed c).

(j) (0.5 points) Show that S = 0 is a solution of (∂ψ/∂S)S=0 = 0 for any c. Which phase is
associated with the solution S = 0?

(k) (1 point) The result of (j) does not guarantee that S = 0 yields a minimum of ψ. Argue on the
basis of (∂2ψ/∂S2)S=0 that ψ is minimized by S ̸= 0 at c > c∗, and calculate c∗. Which phase
do you associate with S ̸= 0?

(l) (2 points) Phase coexistence of a low-density isotropic phase, with density cI and order pa-
rameter SI = 0, and a high-density nematic phase, with density cN and order parameter SN ,
requires three conditions to fix the three unknowns cI , cN , and SN . Give these conditions.

The coexistence conditions involve nonlinear algebraic equations that can easily be determined nu-
merically. One finds that cI = 1.258, cN = 1.915, and SN = 0.915.

(m) (0.5 points) Provide the conditions for which the systems is (metastable) isotropic, nematic,
and phase separated, the above cI , cN and c∗?

(n) (0.5 points) Estimate, for hard rods with L/D = 100, the packing fractions beyond which
orientational ordering is to be expected on the basis of the above result. The packing fraction
is the number density times the volume of a particle.
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Question 2:

“Oppenheimer” - Igniting the atmosphere
M. Beyer

October 1, 2023

During the Manhattan Project, scientists grappled with the potential of igniting the Earth’s atmo-
sphere through nuclear explosions, specifically focusing on the idea of nuclear fusion, which could
lead to the creation of a hydrogen bomb. A 1959 interview with Arthur Compton, a Manhattan
Project leader, vividly depicts the dramatic concerns. Compton was alarmed by the possibility that
an atomic explosion might trigger a chain reaction, potentially causing a catastrophic explosion,
including the vaporization of Earth. He worried about the instability of nitrogen in the atmosphere.

In order for the nuclear reaction to be sustained, it must produce at least as much energy as is lost
by other processes, otherwise the temperature will drop and the reaction comes to an end.
The Rydberg energy is given by

E = −hcRZ
2

n2
, (2.1)

where hcR = 2.179× 10−18 J. You can also use:
1eV = 1.6 · 10−19J
mp = 1.007amu
mn = 1.008amu
1amu = 1.66 · 10−27kg. There is a periodic table at the end of the booklet.

Figure 1: E. J. Konopinski, C. Marvin, and E. Teller, “Ignition of the Atmosphere with Nuclear
Bombs”, Los Alamos National Laboratory, LA-602, April 1946.
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(a) (1 point) Complete the following nuclear reactions that could take place in the atmosphere:

14
7 N + 14

? N →24
12? + ? (2.2)

14
7 N + 14

? N →16
8 ? + ? (2.3)

Show your working out and discuss conservation laws of the mass (A) and atomic (Z) number.

(b) (1 point) Calculate the energy in mega electronvolts (MeV) that is released in each reaction.

For nuclear fusion to happen, the nuclei involved must first overcome the electric repulsion to get
close enough for the attractive nuclear strong force to take over to fuse the nuclei.

(c) (2 points) Sketch an energy diagram along the reaction coordinate (i.e., the distance between
the nuclei) for reaction (1) and indicate all barriers that need to be overcome.
Hint: It might help to consider the nuclear reaction in forward and backward reaction.

Calculate the barrier height(s) in MeV, assuming that the radius of the nuclei is given by
r = A1/3 × 1.2× 10−15m. Discuss your results in relation to what was found in part (b).

Can you imagine why nuclear reactions can take place at energies that lie below the barrier
height(s)? How could this make reaction (2.3) more efficient than reaction (2.2)?

The most important cooling mechanisms we have to consider is bremsstrahlung. At the very high
temperatures in a fusion weapon, the atoms are broken up into nuclei and electrons, forming a
plasma. In a nuclear reaction, the resulting energy is primarily used to heat atomic nuclei. These
need not be in thermal equilibrium with the electrons, therefore we speak of a nuclear temperature.
But the nuclei give some of their energy to electrons by collisions, and thus heat the electrons. The
electrons, in turn, lose their energy to radiation (bremsstrahlung).

(d) (2 points) Estimate the energy it needs to rip off the last electron of a nitrogen atom, so that
it is then fully ionized. How likely is this at a nuclear temperatures of a few MeV, as indicated
on the horizontal axis in figure 1?

(e) (1 point) For bremsstrahlung the radiated power is proportional to the second time derivative

of a dipole moment d⃗ = qr⃗. Explain why collisions of like particles (electron-electron) don’t
lead to bremsstrahlung. Hint: Consider the dipole moment for two colliding particles and the
center-of-mass.

In electron-ion bremsstrahlung, which particles are the main radiators?

(f) (2 points) Another important cooling mechanism is the inverse Compton effect, in which radi-
ation picks up energy from fast electrons. Normal Compton scattering is commonly described
as inelastic scattering, because the energy of the scattered photon E2 is less than the energy of
the incident photon E1. The electron is assumed to be initially at rest (so we only need to take
into account the rest mass E0 = mec

2) and after the collision the energy is (E2
0 + pec

2)1/2, with
the electron momentum pe.

Derive the Compton equation

λ2 − λ1 =
h

mec
(1− cos(θ)), (2.4)

with the scattering angle θ and the photon wavelengths before λ1 and after λ2 Compton scat-
tering. At what angle can the most efficient energy transfer be observed?

(g) (1 point) The resulting rates for energy production (dE/dt)G assuming the geometric cross
section for reaction (2.2) and energy loss through bremsstrahlung (dE/dt)B are depicted in
Figure 1. Can a nuclear bomb ignite the atmosphere?
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Question 3:

Falling Slinky
M. van Exter

October 1, 2023

Consider a slinky (a flexible, open spring) suspended from its top and at rest. When you release
the top end, the time evolution of the slinky is fascinating, as shown in the series of pictures below.
To describe this phenomenon, we consider an ideal uniform slinky of mass m, zero pretension, and
negligible rest length, for which each segment obeys Hooke’s law: F = kL

Figure 2: The behaviour of a slinky dropped from being held at the top. Notice the bottom of the
slinky does not move until the top has “caught up”.

(a) (2.5 points) Describe the (vertical) shape of the slinky at rest(left frame).
Hint: Denote points on the slinky by a dimensionless variable x, ranging from x = 0 at the
bottom to x = l at the top and describe its shape by specifying the height L(x) of each segment
above the bottom of the slinky.

(b) (2.5 points) Explain in words why the slinky behaves the way it does while falling

(c) (2.5 points) How long will it take for the top of the slinky to reach the bottom of the slinky?
How does this result compare with the fall time of a small object falling from the same height
L?

(d) (2.5 points) Derive equations to describe the distance ∆L(t) travelled by the top of the slinky
at a time t after ’launch’, up to the moment when it reaches the bottom of the slinky.
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Question 4:

Charged particles around a black hole
G. Koekoek

October 5, 2023

In this exercise, the unit system c = G = 1 is used. All answers can be expressed in these units.

The spherically symmetric vacuum solution of the Einstein Field Equations,

Rµν − 1

2
gµνR = 8πTµν , (4.1)

is given by the famous Schwarzschild spacetime: a non-rotating black hole of mass M . If this
spacetime is doused in a constant magnetic field F r

φ that is small enough to have negligible effect
on the curvature of spacetime, equatorial and circular motion of a charged particle of mass m and
charge q is given by:

M

r2

(
1− 2M

r

)
(ut)2 − r

(
1− 2M

r

)
(uφ)2 =

q

m
F r
φu

φ. (4.2)

Here, uµ = (ut, ur, uθ, uφ) is the 4-velocity of the particle, measured in proper time τ . All these
velocities are constant. The only non-zero component magnetic field B corresponding to F r

φ is
perpendicular to the equatorial plane, using that in this geometry

|F r
φ| = |Bθ| = |Bz|r

(
1− 2M

r

)
. (4.3)

(a) (2 points) Explain, without calculations, for each of these velocities (ut, ur, uθ, uφ), why it is
constant.

This particle does not simply follow the usual (Newtonian) Kepler’s Third Law, but a modified one
based on the fact that it moves in a gravitational field and is subject to a magnetic field.

(b) (2 points) Show that the modified version of Kepler’s Third Law is given by

uφ =
− q

mF
r
φ ±

√(
q
mF

r
φ

)2
+ 4M

R

(
1− 3m

R

)
2R

(
1− 3m

R

) , (4.4)

in which R is the radius of the circular orbit.

In absence of a magnetic field, the smallest allowed circular orbit around a Schwarzschild black hole
has radius R = 3M . From the result of exercise b, we see that circular motions exist around the
black hole with smaller radii, provided the magnetic field is large enough. A magnetic dipole field
F r
φ with magnetic dipole moment µ in a Schwarzschild spacetime, can be shown to be given by:

F r
φ =

µ

R2

(
1− 2M

r

)(
h−R

∂h

∂R

)
, (4.5)

where

h(R) =
3R3

8M3

(
ln

(
1− 2M

R

)
+

2M

R
+

2M2

R2

)
. (4.6)

This results in some interesting regions of allowed circular orbits R. For a range of values µ > 0,
there exists a region 2M < R < 3M in which no orbits are allowed: a forbidden zone. However, if µ
is made big enough, circular orbits are allowed for all values R in between 2M < R < 3M , and the
forbidden zone disappears.
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(c) (2 points) From the expression in part (b), calculate the formula for the non-zero magnetic field
strength µ needed to make the forbidden zone disappear.

While the particle is doing its orbiting, it will send out both electromagnetic radiation and gravita-
tional waves, losing energy to both in the process. In what follows, we will investigate the stability
of these orbits under this energy loss. To do so, we will need the energy loss due to electromagnetic
radiation. Maxwell’s electrodynamics teaches us that the power Pelec sent out by an accelerating
particle in the non-curved background of Minkowski spacetime is given by

Pelec =
q2γ4

6π

(
a⃗2 + γ2(v⃗ · a⃗)2

)
, (4.7)

where γ is the special relativistic Lorentz-factor, v⃗ is the particle’s orbital velocity, and a⃗ its corre-
sponding acceleration, both measured in t.

(d) (2 points) Using Newton’s Second Law dp
dt = F in a Minkowski background and the Minkowski

line-element, show that in out current situation the following hold:

|⃗a| = q|v⃗|
γ2m2

|Bz|, (4.8)

a⃗ · v⃗ = 0. (4.9)

Here, the inner product is the usual three-dimensional dot-product.

Using the result of exercise d, we can calculate the electromagnetic energy loss in a Minkowski
background. The power sent out by gravitational waves for a mass m in a circular orbit around a
mass M and m is, in a Minkowski background, given by the Peters-Mathews equation:

PGW =
32

5
(Mcω)

10/3 in which Mc =
(mM)3/5

(m+M)1/5
. (4.10)

Taking the ratio of Pelec and PGW , we can now calculate which of the two radiations dominates
the energy loss. However, the formulas for the powers studied in c and d work in a Minkowski
background. In our current sutiation we need a Schwarzschild background.

(e) (2 points) Explain how the ratio between electromagnetic power and gravitational wave power
changes when we move from Minkowski background to Schwarzschild background. Note: no
calculations necessary.
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Question 5:

Supersymmetric quantum mechanics and exactly solvable

models
M.V. Mostovoy

November 4, 2023

Consider one-dimensional motion of a particle described by the Schrödinger equation,(
− h̄2

2m

d2

dx2
+ U(x)

)
ψ(x) = Eψ(x). (5.1)

It is convenient to measure distances in units of the length scale of U , a, and energy in units of h̄2

2ma2 ,
which gives (

− d2

dx2
+ V (x)

)
ψ(x) = ϵψ(x), (5.2)

where V = 2ma2U
h̄2 and ϵ = 2ma2E

h̄2 . In what follows, − d2

dx2 +V (x) is called Hamiltonian and ϵ is called
energy. We shall discuss a way to find V (x), for which the eigenstates of bound states can be found
exactly.

(a) (1 point) Consider two Hamiltonians, Ĥ1 = Â†Â and Ĥ2 = ÂÂ†, where

Â = − d

dx
+W (x) and Â† =

d

dx
+W (x) (5.3)

with real W (x). Show that Ĥ1 and Ĥ2 are Hermitian operators with non-negative eigenvalues.

(b) (1 point) Prove that if Ĥ1 has an eigenfunction ψ1(x) with a non-zero energy ϵ, then there is
an eigenfunction ψ2(x) of Ĥ2 with the same energy. Find a relation between ψ1(x) and ψ2(x).

(c) (2 points) Prove that the wave function ψ1(x) of the zero-energy state of Ĥ1 (if it exists) satisfies

Âψ1(x) = 0, (5.4)

whereas an equation for the wave function ψ2(x) of the zero-energy state of Ĥ2 is

Â†ψ2(x) = 0. (5.5)

It is easy to solve equations (5.4) and (5.5) for arbitrary W (x) and show that only one of the two
Hamiltonians (or none) can have the zero-energy eigenstate.

(d) (2 points) Show that for W (x) = N tanh(x),

V1(x) = N2 − N(N − 1)

cosh2 x
and V2(x) = N2 − N(N + 1)

cosh2 x
. (5.6)

(e) (2 points) For N = 1, V1(x) = 1. Find the ground state energy ϵ and the corresponding
eigenfunction ψ1(x) of Ĥ1. Find the eigenfunction ψ2(x) of Ĥ2 with the same energy. Argue
that ψ2(x) is not the ground state wave function.

(f) (2 points) Show that the ground state energy of Ĥ2 is 0 and find the corresponding wave
function. Explain why Ĥ2 has no other bound states.

Hint: Solve equation (5.5) for W (x) = tanh(x).
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To summarize, the Hamiltonian

Ĥ = − d2

dx2
− 2

cosh2 x
(5.7)

has one bound state with the energy ϵ = −1, the wave function of which can be found analytically.
Considering N = 2, 3, . . ., one can find in a similar way the wave functions and energies of all bound

states of the Hamiltonian Ĥ = − d2

dx2 − N(N+1)
cosh2 x

, but we stop here.
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Question 6:

Measurement of the B meson decay time distribution at the

PEP-II collider
W. Hulsbergen

An e+e− collider is a collider that collides electrons (e−) with positrons (e+). If the beam energies
are chosen such that the total energy is around 10 GeV (about 10 times the proton mass), several
resonances can be seen (Fig. 3). These resonances are called the Upsilon (Υ) resonances. They are
meta-stable states bb̄ states, where b is the bottom (or ‘beauty’) quark.

Figure 3: Particle production as a function of centre-of-momentum energy in the region of the Upsilon
states as measured by the CUSB detector at Cornell in 1980.

Beauty mesons are mesons consisting of a beauty quark and a lighter anti-quark (or vice versa). The
quark content of the four lightest beauty mesons is

B0 = db̄ B̄0 = d̄b B+ = ub̄ B− = ūb

The rest mass of the B0 and B+ meson are almost identical, approximately mB = 5.279 GeV/c2.
The Υ(4S) resonance at MΥ = 10.580 GeV/c2 (the right-most bump in the figure) is just heavy
enough for the decay into two beauty mesons: The majority of events at this collision energy is either
e+e− → Υ(4S) → B0B̄0 or e+e− → Υ(4S) → B+B−.

The decay of the upsilon to the two B mesons is a two-body decay: In the upsilon rest frame (also
called the centre-of-momentum-system, or ‘cms’), the two B mesons fly in opposite direction with
the same momentum.

(a) (1 point) Compute the momentum pcms of a B meson in the upsilon rest frame. Express your
answer in MΥ and mB .
(Here, and in the remainder of the exercise, you may choose to work in natural units, such that
c = 1.)

The PEP-II collider in Stanford is an e+e− collider tuned at the Υ(4S) resonance. PEP-II is an
asymmetric collider: the positron beam has a lower energy than the electron beam, such that the
two B mesons are boosted. The B mesons fly with almost the same velocity parallel to the electron
beam.
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(b) (1 point) Given that the positron beam has an energy of E+ = 3.1 GeV, compute the energy E−
of the electron beam. You may ignore the electron and positron mass, e.g. assume p(e+) = E+/c
and p(e−) = E−/c. Express the answer in terms of E+ and MΥ.

(c) (1 point) Compute the momentum plab of a B mesons in the laboratory frame ignoring its
momentum in the centre-of-momentum frame: That is, assume that the B particle is at rest in
the Υ(4S) rest frame. Express your answer in MΥ, mB , E− and E+.
Hint: Remember that p = γβmc, where γβ is the boost factor. Compute the boost factor γβ for
the upsilon. If you ignore the velocity of the B in the upsilon frame, the boost factor for the B
mesons is identical to that for the upsilon.

The decay time-distribution of an unstable particle usually follows an exponential law

N(t) = N0 e
−t/τ (6.1)

where τ is the mean decay time. B mesons have an average lifetime τB of about 1.5 ps. Due
to a phenomenon called CP -violation there exists decays for which the decay time distribution of
B0 → X is different from the decay time distribution of B̄0 → X̄. The aim of the experiment at
Stanford is to measure this small difference. Therefore, it is important to measure the decay times
very precisely.

The decay length Llab is the distance between the point of decay and the point of production of the
B meson in the laboratory frame. The decay time in the laboratory is computed by dividing the
decay length by the measured velocity:

tlab =
Llab

vlab
(6.2)

(d) (2 points) Show that the proper decay time t (e.g. the decay time in the rest frame of the B
meson) can be computed as

t =
L mB

p
(6.3)

where m is the B meson rest mass, and p and L are respectively the B momentum and decay
length in the laboratory frame, or any other frame in which the B meson is not at rest.

(e) (1.5 points) Compute the average B meson decaylength (the distance a B meson travels before
it decays) in the cms frame. Express the result in the average proper time τB , mB and your
answer to exercise a.

(f) (1.5 points) Compute the average B meson decaylength in the laboratory frame, ignoring the
velocity of the B meson in the e+e− rest frame. Express the result in τB , mB and your answer
to exercise c.

It is technologically easier to build a symmetric-energy collider (e.g. with E+ = E−) than an
asymmetric-energy collider. Yet, it was chosen to use the latter strategy for the PEP-II collider.

(g) (2 points) The decay time resolution is determined by the decay length resolution. The latter is
limited by technology: Typical particle detectors can reach a precision of about σ(L) = 100 µm.
Explain why the PEP-II collider was built as an asymmetric collider.
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Question 7:

Light absorption by a photo-system followed by charge

separation
I van Stokkum

A photo-system is made up of around 100 pigments that are coupled with each other, in order for
the pigments to quickly distribute the excitation energy after absorption.
6% of the pigments (in the reaction centre) are able, by charge separation, to convert the excitation
irreversibly to a chemically different state. The remaining 94% of the pigments are called the antenna.
This way, light is converted in to chemical energy, which can be used to trap CO2. Assume all
pigments have equal energy.

(a) (2 points) What percentage of excitations take place in the reaction centre?

(b) (2 points) What percentage of excitations take place in the antenna?

(c) (2 points) Assume an excited state has a lifetime of 1 nanosecond. Assume that charge separa-
tion has a speed of 1 picosecond. (The decay rate is the inverse of the lifetime.) What are the
corresponding decay rates?

(d) (2 points) What percentage of absorbed photons are converted by charge separation into a
chemically different state? Assume that the speed of energy transfer between antenna and the
reaction centre are much larger than the natural decay rate, and can therefore be ignored.

(e) (2 points) How does nature make sure that the charge separation is irreversible?
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